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Spin-only descriptions of the half-filled one-band Hubbard model are relevant for a wide range of Mott
insulators. In addition to the usual Heisenberg exchange, many other types of interactions, including ring
exchange, appear in the effective Hamiltonian in the intermediate coupling regime. In order to improve on the
quantitative description of magnetic excitations in the insulating antiferromagnetic phase of copper-oxide
�cuprate� materials, and to be consistent with band-structure calculations and photoemission experiments on
these systems, we include second- and third-neighbor hopping parameters, t� and t�, into the Hubbard Hamil-
tonian. A unitary transformation method is used to find systematically the effective Hamiltonian and any
operator in the spin-only representation. The results include all closed four-hop electronic pathways in the
canonical transformation. The method generates many ring exchange terms that play an important role in the
comparison with experiments on La2CuO4. Performing a spin-wave analysis, we calculate the magnon disper-
sion as a function of U, t, t�, and t�. The four parameters are estimated by fitting the magnon dispersion to the
experimental results of Coldea et al. �Phys. Rev. Lett. 86, 5377 �2001�� for La2CuO4. The ring exchange terms
are found essential, in particular to determine the relative sign of t� and t�, with the values found in good
agreement with independent theoretical and experimental estimates for other members of the cuprate family.
The zero-temperature sublattice magnetization is calculated using these parameters and also found to be in
good agreement with the experimental value estimated by Lee et al. �Phys. Rev. B 60, 3643 �1999��. We find
a value of the interaction strength U�8t consistent with Mott insulating behavior.
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I. INTRODUCTION

High-temperature superconductors have challenged al-
most every traditional concept and method of condensed-
matter theory. Ill understood issues concerning Fermi liquids
and quantum critical behavior, for example, may be inti-
mately related to the problem of superconductivity itself.
From the very beginning, it has therefore appeared important
to develop a better understanding of quantum magnetism in
general, given that the parent compounds of high-
temperature superconductors are insulating antiferromagnets.
For example, although these compounds are Néel ordered, it
was proposed early on that, in two dimensions, the ground
state of the Heisenberg antiferromagnet might be very close
to being a resonating-valence bond state rather than a Néel
ordered state.1 This turns out not to be true, but it took some
time to establish numerically that the ground state is indeed
ordered,2,3 in agreement with experiment.4,5

Issues relating to the quantum magnetism of the copper-
oxide materials �cuprates� have resurfaced in the last few
years. Detailed neutron-scattering experiments on the parent
high-temperature superconductor La2CuO4 illustrate that the
question of which model best describes these compounds6

can now be addressed with precision. For example, while the
magnetic properties of copper deuteroformate tetradeuterate
can be described in detail using the Heisenberg model,7

La2CuO4 exhibits clear deviations6 from it.
Specifically, the observed spin-wave dispersion along the

antiferromagnetic Brillouin zone boundary is not predicted

by the Heisenberg model. One can in principle account for
these differences by introducing phenomenological two-spin
and multispin exchange constants into the spin Hamiltonian.
These spin Hamiltonians can be deduced, as shown by
Dirac,8–10 from general considerations of symmetry and per-
mutation operators and the value of the exchange constants
can be fixed by fitting to the experimental data. However, in
our opinion, a more interesting approach is that taken by
Coldea et al.6 The authors of Ref. 6 take the point of view,
which we share, that the one-band Hubbard model is a more
fundamental starting point for the description of the copper-
oxygen planes in these materials if one wants to connect the
magnetism at the microscopic level with electronic correla-
tion effects. Although in this paper we concentrate on half-
filling, it may also be valid on moving away from half-
filling, into the region where the fermions eventually pair to
give high-temperature superconductivity.

The one-band Hubbard Hamiltonian HH is one of the sim-
plest lattice models of interacting electron that admits a
“rich” phenomenology resembling that of the cuprates. A key
feature of this model is that it does describe both the insu-
lating and metallic phases and the �Mott� transition between
them. In interaction-induced insulators, the band is half-filled
and insulating behavior occurs because of interactions, not
because of band folding induced by long-range order. How-
ever, in two dimensions a half-filled band can be insulating
because of a pseudogap induced by fluctuating antiferromag-
netism, or because of the Mott phenomenon. In the former
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case �weak coupling�, the pseudogap appears when the ther-
mal de Broglie wavelength �th is less than the antiferromag-
netic correlation length11 �, while in the latter Mott insulating
case �strong coupling�, the system is insulating even when
this condition is not satisfied. In La2CuO4 neutron measure-
ments have been done only in the regime where ���th, so
that antiferromagnetic correlations could be the source of the
insulating behavior. In a very recent paper Comanac et al.12

used single-site dynamical mean-field theory �DMFT� to cal-
culate the optical conductivity of La2CuO4. The authors of
Ref. 12 found that La2CuO4, or at least its optical conductiv-
ity, is best parametrized by a U / t smaller than that necessary
for the Mott transition in single-site DMFT. Consequently,
the authors of Ref. 12 argue that correlations in the cuprates
may not be as strong as generally believed and that these
materials may not necessarily be Mott insulators but rather,
that the development of antiferromagnetism is necessary to
drive the insulating state. On the other hand, cluster-DMFT
calculations, which are more accurate in two dimensions,
find that the inclusion of short-range antiferromagnetic cor-
relations, which is possible in multisite calculations, reduce
considerably the critical �U / t�Mott necessary for the Mott
transition compared with single-site DMFT.13–17

This leads to one of the key questions in this field. Do the
strange properties observed in underdoped cuprates at finite
temperature arise from interaction-induced localization �Mott
insulator� or from competing phases? If interactions are not
strong enough to lead to a Mott insulator, competing phases
arising at weak coupling are the only remaining possibility.

To find parameters appropriate for high-temperature su-
perconductors, Coldea et al. used earlier theoretical
results18,19 relating the parameters of the Hubbard model,
hopping energy t, and on-site interaction U to the exchange
constants in an effective spin Hamiltonian. The parameters in
the Hubbard model were deduced by fitting the resulting
effective low-energy spin theory to the spin-wave dispersion
relation. This is quite a remarkable result. Indeed, had the
Heisenberg limit accurately described the Hubbard model,
only the value of t2 /U could have been deduced from neu-
tron experiments. The appearance of corrections to the
Heisenberg model to higher order in powers of t /U allows
one to obtain t and U separately, the former being an effec-
tive electronic band quantity.

However, to be consistent with a general message pro-
vided by angle-resolved photoemission spectroscopy
�ARPES�20–23 experiments, optical experiments,24 and with
results from band-structure calculations25,26 on a wide variety
of quasi-two-dimensional cuprate materials, it is necessary to
include in the Hubbard model both second- �t�� and third-
�t�� nearest-neighbor hopping, as they have been found to
have sizable values in all the above studies �see Fig. 1�. In
this paper we thus address the following questions. What is
the effect of these additional hopping constants on the mag-
netic properties of the cuprates, and on La2CuO4 in particu-
lar? Can their “effective” values and that of U within the
Néel order phase be determined by comparing experimental
spin-wave dispersion data with theoretical calculations?

As a first step to address the question of the strength of t,
t�, t�, and U in La2CuO4, we incorporate the effects of these
extra hopping constants into a one-band Hubbard model

from which we derive an effective spin-only Hamiltonian
description of La2CuO4. As we shall see, the effects of t� and
t� are rather subtle and can even sometimes compensate each
other. It is only when these hopping terms have been in-
cluded in the derivation of the effective spin Hamiltonian,
with all the subsequent ring exchanges, that one can extract
more meaningful values of t−t�−t�−U from comparisons of
theory with inelastic neutron-scattering experiments. In par-
ticular, the values of t and U obtained by Coldea et al.6 place
the underlying Hubbard model in the intermediate coupling

FIG. 1. �Color online� Hopping processes and resulting spin
interactions. �a� shows the different hopping processes character-
ized by parameters t, t�, and t� in the Hubbard model considered in
this paper. t, t�, and t� are hopping parameters between first-,
second-, and third-nearest neighbors, respectively. �b� At half-
filling, and when t�= t�=0, canonical perturbation theory leads to
order t4 /U3 to an effective spin-1/2 Hamiltonian, Hs

�4�, characterized
by first- �J1�, second- �J2�, and third- �J3� nearest-neighbor ex-
change interactions as well as a four-spin ring �cyclic� exchange
interaction with coupling strength Jc. �c� In a large S expansion,
Hs

�4� can be recast to order 1 /S as an effective spin Hamiltonian
which only involves bilinear �pairwise� spin-spin exchange interac-
tions between first- �J1

eff�, second- �J2
eff�, and third- �J3

eff� nearest
neighbors. To order 1 /S, the effect of the ring exchange of strength
Jc merely renormalizes the first- and second-nearest-neighbor ex-
change as discussed in Ref. 6. �d� illustrates an example of a four
hops �ring exchange� electronic process that involves t� and t� and
contributes to order t2t�t� /U3 to the spin Hamiltonian Hs

�4�. �e�
shows that the ring exchange term originating from the hopping
path illustrated in �d� introduces in the 1 /S approximation of Hs

eff a
fourth-nearest-neighbor exchange, J4

eff as well as renormalize the
J1

eff, J2
eff, and J3

eff of �c�. �f� illustrates all the additional Jn�4
eff ex-

changes beyond those shown in �c� and which are generated by all
the hopping processes involving an allowed combination of t, t�,
and t� to order 1 /U3.
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regime where the bandwidth and interaction energies are
comparable and hence in the regime where one might expect
an insulator-to-metal transition. Our more detailed analysis
leads to larger values of U, repositioning material relevant
model parameters more clearly within the Mott insulating re-
gime, as we will discuss more thoroughly at the end of this
paper.

Although we analyze experiments on La2CuO4, providing
a specific materials context to our study, we believe that the
parameters of the one-band Hubbard model that we extract
below should be characteristic of the two-dimensional
copper-oxygen planes of cuprate superconductors in general:
specifically, band-structure calculations do reveal variations
in band parameters from one compound to the next,26,27 but
overall, the band structure of CuO2 planes is quite similar
from one compound to the next.28 Even away from half-
filling, whether for hole or electron doped materials, the one-
band Hubbard model for CuO2 planes seems to contain much
of the physics of high-temperature superconductors.29,30 Our
calculations should therefore have wider ranging applica-
tions than the detailed comparison with experiments on pure
La2CuO4 presented below.

In the next two subsections of Sec. I, we describe in more
detail the central issues and key results of this paper. There
are two main parts to our work. In the first part, Sec. II, we
derive the effective Hamiltonian to order 1 /U3, including t,
t�, and t�. This derivation is exact and completely general. In
the second part, Sec. III, we determine the spin-wave ener-
gies, taking into account the quantum correction to the clas-
sical frequencies through the spin-wave velocity renormal-
ization factor, Zc�k�, to lowest order in 1 /S. We then
determine a parameter set �t , t� , t� ,U� by fitting the experi-
mental magnon excitation spectrum of Ref. 6. The resulting
set is in good agreement with values from ARPES experi-
ments and band-structure calculations on various cuprates.
Further, we calculate the zero-temperature staggered magne-
tization order parameter using the set �t , t� , t� ,U� and com-
pare it with experimental values. A more complete solution
of the spin dynamics for the effective spin Hamiltonian de-
rived herein, including magnon-magnon interactions, would
most likely require the use of numerical techniques,31 since it
would be an arduous task to include in the self-energy cor-
rections the multitude of magnon creation and annihilation
terms present beyond the noninteracting approximation.

A. Spin-only description of Hubbard model
and La2CuO4

In many strongly correlated quantum mechanical systems,
the separation of energy scales allows the development of a
low-energy effective theory, through the integration over the
high energy degrees of freedom. In this context, spin-only
descriptions of strongly-correlated electron systems are an
excellent example. Here, in the limit of strong electron-
electron interaction, elimination of the states with one or
more doubly occupied sites reduces exponentially the dimen-
sion of the relevant low-energy Hilbert space, facilitating the
theoretical and numerical description of the problem.
Through this procedure, the regime of particular interest,
where energy scales actually compete, can be approached

perturbatively, via the introduction of a small parameter, the
ratio of the kinetic to potential energy scales. However, the
price one pays for this dimensional reduction is the genera-
tion of longer range and many particle interactions, as one
moves into this intermediate regime. The derivation of such a
theory can be achieved using different methods, leading to
distinct expressions for the effective Hamiltonian, which can
be shown to be equivalent through the application of a uni-
tary transformation.32 One of these methods, the canonical
transformation,19,33,34 which we adopt below, is a convenient
and systematic way of expanding a model like the Hubbard
model to any order in the perturbation parameter.

In the regime where t /U remains a small parameter suit-
able for a perturbation theory, but where one moves away
from the strictly Heisenberg limit �t /U→0�, the pairwise
exchange interactions are joined by ring or cyclic exchange
terms that couple more than two spins.19 Large enough ring
exchange terms have been found to drive some model sys-
tems into exotic, intrinsically quantum mechanical ground
states.35–37 Indeed, there is currently a rapidly growing inter-
est in the study of effective many-body non-pairwise spin-
spin interactions which lead to nontrivially correlated states
in quantum spin systems.38,39

In most theoretical work, the effort has so far focused on
models with only the nearest-neighbor pairwise Heisenberg
exchange and ring exchange. However, when starting from a
microscopic fermionic Hamiltonian the strength of the ring
exchange coupling is determined from the small parameter
t /U and is not a free parameter, nor is it the sole higher order
term arising in the resulting spin-only theory. To the same
order in perturbation, t�t /U�3, the canonical transformation
also generates second, J2, and third, J3, neighbor spin-spin
interactions through processes involving four electronic
hops. The ring exchange, Jc, is thus only one of a set of spin
interactions generated to this order19,32,34 and all should in
principle be taken into account. We remark that in the gen-
eral approach of Dirac,8,9 which relies only on symmetries
without specifying the microscopic electronic Hamiltonian at
the origin of the effective spin Hamiltonian, the phenomeno-
logical coupling constants multiply spin permutation opera-
tors, rather than spin operators themselves and thus have a
different definition from those here. One finds that permuta-
tion of four spins lead to both four-spin ring exchange terms
and pure two-spin exchange when written in terms of spin
operators.10 While this general method of Dirac is applicable
for starting points beyond the one-band Hubbard model, one
of the consequences of our work is that, within the system-
atic development detailed below, this is a good starting point
for describing many quantitative features of the cuprate se-
ries.

Within the t-U Hubbard model, the inclusion of virtual
hopping pathways of n hops thus introduces further neighbor
spin couplings of order t�t /U�n−1. For a compound with a
band structure characterized by several tight-binding param-
eters of comparable value, one should consider the role of
direct further neighbor hops over length scales comparable
with the nearest-neighbor pathways of length n, as well as
the multiple hop terms. Hence, to develop a theory accurate
to order �1 /U�3, one should include direct hopping to first-,
second-, and third-nearest neighbors, characterized by energy
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scales t, t�, and t�, respectively. These hopping processes
generate second- and third-neighbor Heisenberg exchange
terms that compete with those generated by the four-hop pro-
cesses discussed above. There is evidence that this is the
situation for the CuO2 planes of parent superconducting ma-
terials: for example, in Sr2CuO2Cl2, which has a half-filled
band, the hopping constants t� and t� are estimated to be
t� / t�−0.3, t� / t�0.2, from comparisons of exact diagonal-
ization with photoemission experiments.40 Very similar val-
ues are found from comparisons with other types of
calculations41 and from band-structure calculations for
YBa2CuO3O7 �Ref. 42�. In fact these values are typical for
insulating materials with copper-oxygen planes, including
both hole and electron doped cuprates.28,43 For La2CuO4,
band-structure calculations25,26 suggest smaller values of t� / t
and t� / t. ARPES experiments are not available for this com-
pound but they are for the doped system La2−xSrxCuO4 that
becomes a high-temperature superconductor. According to
these experiments,20–23 t� / t and t� / t deduced from the shape
of the Fermi surface are close to band-structure values, al-
though they are larger by about 30% for very lightly doped
compound.20 We will return to this issue later.

Given this range of values for t� and t� one could expect
the resulting exchange terms of order t��t� /U� or t��t� /U� to
be of similar magnitude to those of order t�t /U�3. This is one
of the motivations for the work presented in this paper where
we introduce all terms in a spin-only Hamiltonian that de-
pend on t, t�, and t� and that are generated up to order 1 /U3.
We assess their importance making particular reference to
the magnetic properties of La2CuO4. We show that the ca-
nonical transformation method19,32,34 can be easily general-
ized for the t−t�−t�−U Hubbard model, giving a complete
spin-only description for arbitrary first-, second-, and third-
neighbor hopping, correct to order 1 /U3.

B. Spin-wave analysis and comparison with experiment

It has been known for some time that a spin-wave analysis
of the spin-1/2 Heisenberg antiferromagnet on a square lat-
tice, taken to leading order in 1 /S, reproduces the zero-point
quantum fluctuations of the staggered moment to a good
approximation.44 This is because the second-order terms
renormalize the classical magnon frequencies but do not in-
duce magnon-magnon interactions and make zero contribu-
tion to the magnetization. In this paper, we therefore take it
as a reasonable first approximation to calculate quantum spin
fluctuations to lowest order in 1 /S and include the first-order
corrections to the classical frequencies. We have not ad-
dressed the question as to whether other physics, in particu-
lar magnon-magnon interaction, is introduced to second or-
der in 1 /S.

We compare our results with the inelastic neutron-
scattering data of Coldea et al.6 and with the spin-wave cal-
culation therein where only nearest-neighbor hopping t was
considered. We find that including further neighbor hops al-
lows for a more convincing description of the neutron data,
with the set of parameters �t , t� , t� ,U� that best describe the
data being comparable to other estimates for cuprate materi-
als. Our analysis also gives an estimate for the total stag-

gered magnetic moment which is in good quantitative agree-
ment with the experimental estimate.45

We now describe in more detail the main features of the
data that must be explained and how going beyond the
nearest-neighbor hopping provides a better model. The in-
elastic neutron-scattering data of Coldea et al.6 provide an
extensive description of the magnon dispersion in La2CuO4
over the whole of the first Brillouin zone. The analysis of
Ref. 6 clearly shows that the nearest-neighbor spin S=1 /2
Heisenberg Hamiltonian does not reproduce the magnon dis-
persion over the whole zone. Most notably, while a spin-
wave analysis of the Heisenberg model to order 1 /S gives a
flat magnon dispersion over the interval qBZ
� ��� ,0� , �� /2,� /2�� �along the antiferromagnetic zone
boundary�, the experimental results show negative �down-
ward� dispersion over this region �see Fig. 2�. Going beyond
1 /S for the Heisenberg model does not explain this negative
dispersion feature.46,47 Rather, introducing interactions be-
tween magnons gives rise to a small positive �upward� dis-
persion over this qBZ interval.46,47 Including terms up to
t�t /U�3, which generates second- and third-neighbor and ring
exchange interactions, does however provide the characteris-
tic downward dispersion, and this is what allowed Coldea et
al. to fit the experimental data within a 1 /S spin-wave
analysis.48,49 Recent analysis of triplon excitations in the
copper-oxide based ladder material La4Sr10Cu24O41 also sug-
gests that ring exchange interactions are present and are of a
similar amplitude50 to those found in Ref. 6 for La2CuO4.

It is important for the rest of the paper to expand briefly
on this negative dispersion and to give an interpretation for
it: the spin-only Hamiltonian, Hs

�4�, obtained from the Hub-
bard Hamiltonian, HH, to order t4 /U3, contains first-,
second-, and third-nearest-neighbor exchanges, J1, J2, and J3,
respectively, as well as a four-spin ring exchange Jc �see Eq.
�16��. Within the Holstein-Primakoff spin-wave approxima-
tion, all terms in Hs

�4�, including the ring exchange, contribute
to order 1 /S quadratic magnon creation/annihilation terms to
the resulting quadratic magnon Hamiltonian Hs,quad

�4� . To this
order, the spin-wave approximation thus eliminates the origi-
nal multispin �ring exchange� nature of the spin Hamiltonian,
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FIG. 2. �Color online� Magnon energy in La2CuO4, as a func-
tion of wave vector k, across the Brillouin zone at a temperature of
10 K. The experimental data �red squares� and fit �full line� are from
Ref. 6. The fitting parameters t and U are given in Eq. �36�.
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Hs
�4�. As a result, Hs,quad

�4� could equally well have been derived
from a different spin-only Hamiltonian, Hs

eff, containing
solely bilinear, or pairwise, spin exchange terms only. Hs

eff

would have exchange terms of the form Jn
effS�0� ·S�rn�,

which couple a reference spin S�0� to an n-nearest-neighbor
spin at rn.48,49,51 The relationship between the Jn

eff exchange
couplings of Hs

eff and the set �J1 ,J2 ,J3 ,Jc� of Hs
�4� is6

	J1
eff = J1 − 2JcS

2

J2
eff = J2 − JcS

2

J3
eff = J3


 , �1�

where S=1 /2, J1= �4t2 /U��1−6t2 /U2�, J2=J3=4t4 /U3, and
Jc=80t4 /U3, and where the convention Jn

eff�0 means anti-
ferromagnetic exchange.52 We note from Eq. �1� that Jc leads
to a “renormalization” of J2. In particular, for the t-U Hub-
bard model, J2

eff=−16t4 /U3 �S=1 /2� is negative for all t /U.
The negative value of J2

eff favors ferromagnetic correlations
across the diagonal of a plaquette and gives a downward
dispersion along qBZ� ��� ,0� , �� /2,� /2�� �Ref. 6�, as re-
quired. In the limit t /U→0, one recovers the nearest-
neighbor Heisenberg S=1 /2 Hamiltonian and the dispersion
becomes flat along the zone boundary.53

Having provided an explanation for the origin of the neg-
ative �downward� dispersion along qBZ, we can now discuss
the effect on the spin-wave dispersion of including second-
nearest-neighbor hopping t�. When passing from the Hub-
bard model, including t�, to a spin-only model, the leading
order effect of t� is to generate an antiferromagnetic ex-
change between second-nearest neighbors that modify J2 in
Hs

�4�:

J2 → J2 + 4�t��2/U = 4t4/U3 + 4�t��2/U �2�

which in turn modifies J2
eff in the 1 /S spin-wave approxima-

tion in Eq. �1�:

J2
eff → J2

eff + 4�t��2/U = 4�t��2/U − 16t4/U3. �3�

So, while for t�=0 the dispersion is downward for all t /U, a
nonzero t� competes with this trend since the second-nearest-
neighbor exchange generated to order 4�t��2 /U is antiferro-
magnetic and frustrating. This means that a sizable increase
in t /U is required to achieve a good fit to the data of Ref. 6
when t� is included in the spin-only Hamiltonian to this or-
der. The same observation has been made from random-
phase-approximation calculations54,55 and also from quantum
Monte Carlo calculations,56 both on the half-filled one-band
Hubbard model. This evolution puts the best-fit value for t /U
into the intermediate coupling regime and perhaps very close
or maybe even beyond the critical value for a metal-insulator
transition. If we estimate this critical value from the value of
U at which a finite gap in the density of states persists at
finite temperature, then Fig. 5 of Ref. 57 suggests that for
t�= t�=0 on the square lattice, the critical value is t /U
�1 /6=0.166. In the variational cluster approximation,
which overestimates the effect of interactions, the critical
value of t /U is larger but studies as a function of �t�� suggest
that frustration leads to a decrease of this value.58 The same
trend as a function of frustration �t�� occurs on the aniso-
tropic triangular lattice.59 Hence, with nonzero t� included in

the model and presumably at play in the real material, it is
ultimately important that successful fits to experiments on
parent insulating compounds lead to smaller values of t /U
than those where t�=0, contrary to that found in the refer-
ences cited above, where the third-nearest-neighbor hopping
t� is equal to zero.

As discussed above, the third-neighbor hopping term t� is
estimated to be of the same order as t� in a number of cuprate
materials and should therefore also be taken into account.26

However, the above discussion on the leading effect of t�
might leave one wondering whether a perturbative spin-only
Hamiltonian starting from a half-filled one-band Hubbard
model can provide a quantitative microscopic description of
La2CuO4 at all. It is this very question that has motivated us
in pursuing the work reported here, and it is why we have
derived the spin-only Hamiltonian Hs from a t−t�−t�−U
Hubbard model, including all ring exchanges and hopping
processes to order �1 /U�3. This procedure generates a large
number of further neighbor and ring exchange paths, a small
number of which make significant contributions. The main
corrections come from terms of order �t��2 /U and �t��2 /U
but we also find that ring exchanges of order t�t�t2 /U3 are
also significant. The latter, in particular, determine the sign
of t� / t�. Of course, the resulting theory has now two more
free parameters �i.e., t� and t�� than the original model6 to fit
the inelastic neutron-scattering data and the reader may
therefore not be surprised that we achieve a better fit than in
Ref. 6. However, as we show in Sec. III, the ensemble of
parameters giving the best unbiased fit to the data is in good
agreement with the values suggested from other sources for
various cuprates.20–23,27,41

The rest of the paper is organized as follows. In Sec. II we
present the method to obtain a consistent spin representation
of the original Hubbard model up to third-neighbor hops. As
an application, in Sec. III, we investigate the consequences
of applying the method to a general t−t�−t�−U model by
fitting the magnon dispersion data of Ref. 6 for La2CuO4.
Section III also discusses the procedure to calculate the stag-
gered magnetization operator and shows that our expansion
of the t−t�−t�−U model gives a value of the sublattice mag-
netization in good agreement with experiment.45 We con-
clude the paper in Sec. IV. We have included a number of
appendixes to assist the reader with a few technical issues.
Appendix A gives the various terms that contribute to the
effective spin Hamiltonian with arbitrary t, t�, and t� up to
order 1 /U3. In Appendix B we show that the renormalization
factor for the magnetization coming from charge
fluctuations34 is the same in our approach as that found in an
extension of the mean-field Hartree-Fock method of Ref. 60.
Appendix C gives the k dependence of the various terms
coming in the 1 /S spin-wave calculation. Appendix D dis-
cusses the spin-wave velocity renormalization factor, Zc�k�.
Appendix E comments on the results of various constrained
fits to the spin-wave energies.

II. EFFECTIVE SPIN HAMILTONIAN FOR THE
t−t�−t�−U HUBBARD MODEL

A derivation of the spin-only effective theory starting
from the one-band t−U Hubbard model has been given by
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several authors.18,19,33,34 In this section we investigate the
effects of including parameters t� and t�, for direct hops be-
tween second- and third-nearest neighbors, respectively, on
the spin-only effective theory. We first recall the key steps in
the unitary transformation method for the t−U Hubbard
model. We then apply the method to the t−t�−t�−U model
and obtain the modified spin-only Hamiltonian generated by
all possible virtual electronic paths up to order 1 /U3, giving
terms of order t4 /U3, �t��4 /U3, �t��4 /U3, t2�t��2 /U3,
t2�t��2 /U3, t2t�t� /U3, and �t�t��2 /U3.

A. Effective Hamiltonian in the singly occupied subspace

We begin with a brief review of the derivation of the
spin-only Hamiltonian of the one-band nearest-neighbor
Hubbard Hamiltonian, HH:

HH = T + V �4�

=− t�
i,j;�

ci,�
† cj,� + U�

i

ni,↑ni,↓. �5�

The first term is the kinetic energy term that destroys an
electron of spin � at nearest-neighbor site j and creates one
on the nearest-neighbor site i. The second term is the on-site
Coulomb energy U for two electrons with opposite spin to be
on the same site i and where ni,�=ci,�

† ci,� is the occupation
number operator at site i.

As introduced by Harris et al.33 and developed further by
MacDonald et al.,19 the transformation relies on the separa-
tion of the kinetic part T into three terms that respectively
increase by 1 �T1�, keep constant �T0� or decrease by one
�T−1� the number of doubly occupied sites.

We write

T = − t�
i,j;�

ci,�
† cj,� = T1 + T0 + T−1, �6�

T1 = − t�
i,j;�

ni,�̄ci,�
† cj,�hj,�̄, �7�

T0 = − t�
i,j;�

hi,�̄ci,�
† cj,�hj,�̄ + ni,�̄ci,�

† cj,�nj,�̄, �8�

T−1 = − t�
i,j;�

hi,�̄ci,�
† cj,�nj,�̄, �9�

where �̄ stands for up if � is down and for down if � is up.
This separation comes from multiplying the kinetic term on
the right by ni,�̄+hi,�̄=1 and multiplying on the left by nj,�̄
+hj,�̄=1.

Applying the unitary transformation eiS to HH leads to an

effective Hamiltonian, H̃s, where double occupancy is elimi-
nated perturbatively, order by order in S. Using the relation

H̃s
�k� = eiSHHe−iS = HH +

�iS,HH�
1!

+
�iS,�iS,HH��

2!
+ ¯

�10�

and, defining as in Ref. 19

T�k��m1,m2, ¯ ,mk� = Tk�m� = Tm1
Tm2

¯ Tmk
, �11�

S is solved for, order by order. Hence, starting from a low-

energy vacuum of singly occupied sites, H̃s contains no
terms that create or annihilate doubly occupied sites up to the
order for which S has been determined. This leads to an
expression for H̃s to order t�t /U�3 �see Refs. 19 and 34�:

H̃s
�4� = −

1

U
T�2��− 1,1� +

1

U2T�3��− 1,0,1�

+
1

U3T�4��− 1,1,− 1,1� − T�4��− 1,0,0,1�

−
1

2
T�4��− 1,− 1,1,1�� , �12�

where the associated generator for the unitary transformation
is

iS�3� =
1

U
�T1 − T−1� +

1

U2 ��T1,T0� − �T0,T−1��

+
1

U3�− �T0,�T0,T1�� − �T0,�T1,T0�� − �T1,�T1,T0��

−
1

4
�T−1,�T0,T−1�� +

2

3
�T1,�T1,T−1��

+
2

3
�T−1,�T1,T−1��� . �13�

B. Derivation of the spin Hamiltonian

The effective Hamiltonian H̃s
�4� in Eq. �12� is still defined

in terms of fermion operators entering the T�k� operators.
When focusing on the magnetic properties of the half-filled
Hubbard model, it is convenient to recast the effective

Hamiltonian H̃s in Eq. �12� in a spin-only notation. For this,
we use a mapping19 between the subspace of the Hubbard
model with singly occupied sites and the Hilbert space of a
spin S=1 /2 system. The mapping is

Hubbard Space Spin
1

2
Space

ni,↑ = 1 → �¯ ↑
︸

site i

¯�

ni,↓ = 1 → �¯ ↓
︸

site i

¯� . �14�

The spin Hamiltonian Hs
�k� acting on this space is derived

from the Hamiltonian acting on the occupation number sub-
space �see Ref. 19 for more details�. Once it is written in the
spin-1/2 basis it can be transformed into an explicitly SU�2�
invariant form using
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Hs
�k� =

1

2N �
�1,�2,¯,�N=0

3 ��
l=1

N

��l

�l��Tr���1

�1�
¯ ��N

�N�H̃�k�� ,

�15�

where ��p

�p� is the Pauli matrix for site p, with electron in spin
state �p. From this one finds the spin-only Hamiltonian
evaluated to third order in t /U for the t−U Hubbard
model:19,34

Hs
�4� = �4t2

U
−

24t4

U3 ��
�i,j�

�Si · Sj� +
4t4

U3 �
��i,j��

�Si · Sj�

+
4t4

U3 �
���i,j���

�Si · Sj� +
80t4

U3 �
�i,j,k,l�

��Si
� · Sj

���Sk
� · Sl

��

+ �Si
� · Sl

���Sk
� · Sj

�� − �Si
� · Sk

���Sj
� · Sl

��� , �16�

where �i , j�, ��i , j��, and ���i , j��� denote sums over first-,
second-, and third-nearest neighbors, respectively, and where
�i , j ,k , l� identifies an elementary square plaquette with sites
i , j , k , l defining the four corners.

C. Inclusion of t� and t�

Having reviewed the procedure for deriving Hs
�k� for

nearest-neighbor hopping t only, we now discuss how to in-
clude second- and third-nearest-neighbor hopping t� and t�.
We start with an extended Hubbard Hamiltonian:

HH = T + T� + T� + V �17�

=− t �
i,j1;�

ci,�
† cj1,� − t� �

i,j2;�
ci,�

† cj2,�

− t� �
i,j3;�

ci,�
† cj3,� + U�

i

ni,↑ni,↓, �18�

where t� is the hopping constant to the second-nearest neigh-
bor and t� to the third-nearest neighbor �see Fig. 1�; j� is the
� nearest neighbor of i. As above, we define the operators
Tm, taking into account t� and t�:

T1 =
1

2 �
i,j;�

�− ti,j�ni,�̄ci,�
† cj,�hj,�̄, �19�

T0 =
1

2 �
i,j;�

�− ti,j��hi,�̄ci,�
† cj,�hj,�̄ + ni,�̄ci,�

† cj,�nj,�̄� , �20�

T−1 =
1

2 �
i,j;�

�− ti,j�hi,�̄ci,�
† cj,�nj,�̄, �21�

where ti,j = t if i and j are nearest neighbors, ti,j = t� if i and j
are second-nearest neighbors, and ti,j = t� if i and j are third-
nearest neighbors and 0 otherwise. The commutation rela-
tions in Eq. �10� do not change and the expression for the
unitary transformation in Eq. �13� remains formally the
same. On the other hand, the resulting spin Hamiltonian gets
drastically modified by the inclusion of t� or t�. In particular,
many plaquette or ring exchange terms are generated. The

complete expression for the spin Hamiltonian is reported in
Appendix A. As in previous work,19,34 and even more so
here, given the much increased complexity of the Hamil-
tonian, a computer program was used to collect together all
the terms in the projection of Eq. �15� which ultimately lead
to a globally SU�2� invariant effective spin-only Hamiltonian
Hs

�4��t , t� , t� ,U�.

III. PHYSICAL RESULTS

A. Spin-wave dispersion

1. Spin-wave calculation

In order to obtain the magnetic excitation spectra pre-
sented in Figs. 2 and 3 we perform a 1 /S spin-wave calcu-
lation. The spin operators are written in terms of boson op-
erators through a Holstein-Primakoff61,62 1 /S expansion for a
bipartite Néel ordered square lattice:

Sublattice a Sublattice b

	 Si
z = S − ai

†ai

Si
+ = �2S − ai

†aiai

Si
− = ai

†�2S − ai
†ai


 	 Sj
z = − S + bj

†bj

Sj
− = �2S − bj

†bjbj

Sj
+ = bj

†�2S − bj
†bj .


 �22�

In reciprocal space, one obtains to order S the following
general expression of the spin Hamiltonian Hs

�4��Hs,0
�4�

+Hs,quad
�4� , where Hs,0

�4� is the classical ground state energy and
Hs,quad

�4� is given by

Hs,quad
�4� = �

k
Ak�ak

†ak + bk
†bk� + Bk�ak

†bk
† + akbk� . �23�

Note that here and elsewhere in the paper, the sums in recip-
rocal space are over the magnetic Brillouin zone, which for a
square lattice with N spins contains N /2 sites. Hs,quad

�4� can be
diagonalized through a Bogoliubov transformation

�ak = uk�k + vk	k
†

bk = uk	k + vk�k
† � , �24�

giving

0
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E
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FIG. 3. �Color online� Magnon energy in La2CuO4, as a func-
tion of wave vector k, across the Brillouin zone at a temperature of
10 K. The experimental data �red squares� are from Ref. 6. The fit is
made using the parameters given by Eq. �38�.
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Hs,quad
�4� = �

k

k��k

†�k + 	k
†	k + 1� �25�

and where

uk
2 =

Bk
2

2
k�Ak − 
k�
, vk

2 =
Ak − 
k

2
k
. �26�

The magnons for a given wave vector k are thus twofold
degenerate with eigenfrequencies:61


k = �Ak
2 − Bk

2 . �27�

In this expression, the functions Ak and Bk take into account
all the bilinear and ring exchange interactions entering Hs

�4�

and given in Appendix A. Detailed expressions for Ak and Bk
can be found in Appendix C.

The staggered magnetization operator, Ms
†, is, in reference

to sublattice a, defined conventionally for a spin-only Hamil-
tonian as

Ms
† =

1

�N/2� �
i=1

i=N/2

Si
z. �28�

Rewriting the previous equation in k space and introducing
the Bogoliubov transformation above, we arrive at a standard
expression:61

Ms
† = S −

2

N
�
k

ak
†ak

= S −
2

N
�

k

�uk
2�k

†�k + vk
2	k	k

† + off-diagonal terms� .

�29�

At zero temperature, all ��k
†�k� and �	k

†	k� are zero, and one
has for the ground state expectation value of Ms

†, �Ms
†�:

�Ms
†� = S −

2

N
�
k

vk
2 = S +

1

2
−

2

N
�
k

Ak

2
k
. �30�

2. Magnon self-energy: renormalization factor Zc(k)

The 1 /S correction to Eq. �30� vanishes for the Heisen-
berg antiferromagnet, with the next corrections appearing at
order 1 /S2 only.44 This explains why spin-wave calculations
give a very good estimate of zero-point quantum fluctuations
in this model. On the other hand, the terms to quartic order in
magnon operators in Hs

�4� give a contribution to the diagonal
part of the magnon self-energy.44 This gives rise to a 1 /S
correction to the spin-wave energies 
k in Eq. �27�. This
renormalization of the magnon energy scale is important for
the quantitative comparison between our calculation and the
experimental results of Coldea et al.6 and for the subsequent
determination of the parameters �t , t� , t� ,U� and hence we
evaluate it for our effective spin Hamiltonian.

Expanding the spin Hamiltonian to fourth order in the
boson operators of the Holstein-Primakoff transformation,
one finds

Hs
�4� = H0

�4� + Hs,quad
�4� + Hs,quart

�4� . �31�

Hs,quart
�4� is now treated as a first-order perturbation to the qua-

dratic spin-wave Hamiltonian Hs,quad
�4� . To this order the mag-

non energy is shifted but the eigenvectors are unchanged and
magnon-magnon interactions are not generated. The shift is
found by diagonalizing the set of 2�2 matrices with ele-
ments �0��kHs,quart

�4� �k�
†�0�, where ��k ,�k��� ��k ,	k�. We

hence find a correction 
k to the magnon energy and a
renormalized magnon energy 
̃�k�:


k → 
̃k = 
k + 
k = 
k�1 + �k� = 
kZc�k� , �32�

where we refer to �k as the magnon energy correction and
Zc�k� the magnon energy renormalization factor. For the
Heisenberg model, the product 
k�k corresponds to the lead-
ing contribution to the magnon self-energy calculated in Ref.
44. To order t2 /U and with t� and t� set to zero, �k is uni-
form over the whole Brillouin zone and we find

Zc�k� � 1.1579, �33�

as obtained in Ref. 44. Details of this calculation are given in
Appendix D.

When nonzero values of t� and t� are included, �k is no
longer constant over the Brillouin zone, but the twofold de-
generacy for each wave vector k remains. The renormalizing
factors Zc�k� are calculated numerically. For a given set of t�
and t� values, a finite-size scaling analysis was used to ex-
trapolate the sums over k� in Appendix D over the Brillouin
zone to the thermodynamic limit. In Fig. 4 we show the
dispersion of �k obtained for the parameter set �t , t� , t� ,U�
�see Eq. �38�� giving the best fit to the magnon dispersion
data from Coldea et al.,6 as described in Sec. III A 3. For
these values the mean value of Zc�k� over the Brillouin zone
is found to be

FIG. 4. �Color online� k dependence of �k. Data are shown over
the structural Brillouin zone of the square lattice. As can be seen,
the dispersion has the symmetry of the zone corresponding to the
antiferromagnetic order.
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�Zc�k�� � 1.219. �34�

We also calculate the standard deviation of �k over the Bril-
louin zone for this set of parameters finding

���k�
��k�k

� 0.33 � 10−3, �35�

where � is the standard deviation of the distribution of val-
ues. Details of the calculation can be found in Appendix D.

From our results here one can see that the magnon energy
renormalization Zc�k�, calculated to order 1 /S, is indeed an
important element of the quantitative comparison between
our microscopic theory and the experimental results of
Coldea et al.6 The values obtained for Zc�k� change the en-
ergy scale of the magnon dispersion by around 20% of that
obtained if the bare Zc=1 is used. The Zc factors therefore
have proportionate consequences for the values of U and t
deduced by comparisons with experiment.

3. Experimental data and previous results

The magnon energy spectrum for La2CuO4 obtained
through inelastic neutron scattering6 is shown in Fig. 2. The
data follow a trajectory through the Brillouin zone covering,
in particular, the line along the magnetic zone boundary with
wave vector in the interval qBZ= ��� ,0� , �� /2,� /2��, where
the previously discussed downward dispersion is manifest.
Also included in this figure is the fit of Ref. 6 using Hamil-
tonian �16�. The parameters used there to make the fit at a
temperature of 10 K are6

	t/U = 0.135 �0.03

t = 0.30 �0.02 eV

U = 2.3 �0.4 eV

 . �36�

While the above fit of Coldea et al.6 is clearly good, the
numerical values should be compared with those from ex-
periments and band calculations on other cuprate materials.
For example, values found by fitting ARPES results for the
half-filled compound Sr2CuO2Cl2 containing CuO2 planes
are23,40,41

	
t/U = 0.1 �0.05,

t�/t = − 0.35 �0.05,

t�/t = 0.22 �0.05,

t = 0.35 eV,

U = 3.5 eV.

 �37�

One can see that the energy scale set by U and the ratio t /U
in Eq. �37� are quite different from that found by Coldea et
al.6 Also, while the effects of t� and t� are neglected in Ref.
6, the ARPES results unambiguously show that t� and t� have
non-negligible values within the CuO2 planes,23,41 although
band-structure calculations25,26,42 on LaCu2O4 and ARPES
experiments on the lightly doped system20–23 do suggest
somewhat smaller values of t� than those in Eq. �37� for
Sr2CuO2Cl2. In other words, based on various experiments
on a number of cuprates, one would have “anticipated” a t /U
value for La2CuO4 somewhat smaller than the value in Eq.

�36� from Ref. 6, although the experimental uncertainty al-
lows for some overlap between the two. Most importantly,
from a theoretical point of view, t /U=0.135 corresponds to
U=7.4t, which is smaller than the tight-binding bandwidth of
8t. This value may therefore be a little small,57 to ensure that
the material remains within the Mott insulating phase. The
error bars do allow values up to U=9.5 �t /U=0.105�, which
would push the model further into the insulating regime.
Nevertheless, it is quite possible that the analysis of the data
in Ref. 6 using the model Hs

�4� in Eq. �16� leads to an under-
estimation of U. From this discussion it is clear that a more
detailed analysis of the experimental magnon dispersion is
needed that accounts for t� and t�.

4. Fitting procedure and fit to the experimental data

Our theory, Hs
�4��t , t� , t� ,U� in Appendix A, now contains

four independent parameters, t , t� , t� , U, which we fit to the
ensemble of experimental data points from Ref. 6. As we
will show in Appendix D, Zc�k� is a function of
t /U , t� / t , t� / t, and k. It thus should be calculated over the
ensemble of data points for each iteration of the fitting algo-
rithm. As the expression for Zc�k� contains inner sums ��k��
over the Brillouin zone, the fitting procedure is time consum-
ing. A finite-size scaling analysis of the convergence of these
sums toward the thermodynamic limit is discussed in Appen-
dix D. The fitting procedure is as follows. We choose a first
point at wave vector k with experimental magnon energy

exp�k� and minimize the quantity �k�= �
̃�k�−
exp�k�� with
respect to t , t� , t� , U. From this first fit we extract a factor
4t2 /U that fixes the energy scale for the ensemble of points
and allows us to write 
̃�k� as �4t2 /U� times a function of
t /U , t� / t , t� / t, and k. This energy scaling step can be
achieved for many values of t /U , t� / t, and t� / t and the con-
straints on these variables are not very high at this stage. The
best-fit parameter set is now found by minimizing the en-
semble of variables ��k��U /4t2�� with respect to
t /U , t� /U , t� /U, using least-squares fit. Once the final value
of t /U is established, the value of t, and hence U, t�, and t�,
are deduced. The values found are

	
t/U = 0.126 �0.03,

t�/t = − 0.327 �0.05,

t�/t = 0.153 �0.05,

t = 0.422 eV,

U = 3.34 eV.

 �38�

The error bars, obtained through the calculation of the least-
squares function �2, represent a deviation of less than 5%
from the best-fit values.

If the dispersion in Zc�k� is ignored, it only needs to be
calculated once for each iteration of the ensemble of points,
thus considerably speeding up the procedure. Ignoring the
dispersion and taking Zc�k�= �Zc�k��=constant, the best-fit
parameter set for this case gives the values

	
t/U = 0.121 �0.03,

t�/t = − 0.313 �0.05,

t�/t = 0.167 �0.05,

t = 0.430 eV,

U = 3.57 eV.

 �39�
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Comparing the two sets, taking the size of the error bars
into account, and considering the fact that Zc�k� represents
only the leading correction to the magnon energies, we con-
clude that the dispersion of �k does not have a significant
effect on the determination of the parameters.

The best fit to the experimental data using parameter set
�38� is shown in Fig. 3. Comparing with Fig. 2, one observes
that introducing t� and t� leads to an improvement in the
quality of the fit through the experimental points, particularly
for the points from the zone center, �� ,��, to the zone edge
at �� ,0�. One might have expected this, given the increased
number of free parameters. However, the most important
change in the way the data is described by the model system
can be seen by considering sets �37� and �38�. Here one can
see that the parameters compare much more favorably with
other estimates for the cuprate series such as photoemission
measurements and exact diagonalization results on
SrCuO2Cl2 �Ref. 40�. This is particularly the case for the
energy scales t and U which are found to be larger than those
in Eq. �36�. The ratios t� / t and t� / t are also in fair agreement
with values for other cuprates and, perhaps most interesting,
the fitting procedure even finds the correct signs for these
ratios. The ratio t /U is slightly reduced compared with Eq.
�36� and more in line with a value that one would expect for
a system in the Mott insulating regime, although the change
is less spectacular than in the case of the absolute energy
scales t and U, with the difference in the t /U value remain-
ing within the experimental error bars. However, considering
the overall comparison between calculations and the experi-
ments of Ref. 6, it would appear that adding all terms in t , t�,
and t� up to order 1 /U3 does allow a quantitative description
of the magnon dispersion in La2CuO4, which is an improve-
ment over the equivalent procedure which only includes the
t and U parameters.

5. Comments on the influence of t� and t�

Referring to Appendix A, one can see that the inclusion of
t� and t� and all four-hop processes involving t , t�, and t�
introduces a large number of ring exchange terms. From this
observation one might ask which of the many terms make
the most difference and could we have got away with a less
complex effective spin Hamiltonian? In this section we ad-
dress these questions and justify our choice to do a complete
calculation of all four-hop processes.

The first question is whether or not we can limit ourselves
to just one extra parameter t� or t�. This point has already
been discussed in Sec. I �Sec. I B�. We argued there �Eq. �3��,
that t� increases the strength of the antiferromagnetic second-
neighbor exchange, J2→ t4 /U3+4�t��2 /U. This in turn modi-
fies the effective second-neighbor coupling in the spin-wave
analysis, J2

eff→4�t��2 /U−16t4 /U3 making it less strongly
ferromagnetic, or even antiferromagnetic if t� is sufficiently
large. As the negative magnon dispersion along the zone
boundary6 is a consequence of a ferromagnetic �i.e., nega-
tive� J2

eff, one expects that fitting the calculated magnon dis-
persion to the experimental data will require a larger value of
t /U if t��0 but t� is ignored. This is indeed the case; intro-
ducing t� to order �t��2 /U and setting t�=0, as well as ne-

glecting all terms of order �t�t�2 /U3 and �t��4 /U3, the follow-
ing best-fit parameters are found:

� t/U = 0.166 �0.016,

t�/t = − 0.24 �0.01.
� �40�

The results are very close to those found from a random-
phase approximation54,55 and also from quantum Monte
Carlo calculations.56 It is clear that the addition of t� only has
taken the parameter set in the wrong direction: t /U is now
further from most estimates than the case when t�=0. Also,
with U=6t the system could be very near the metallic
phase,57 and not deep in the Mott insulating phase, as is the
case for La2CuO4. As we discussed in Sec. I, for U=6t the
t�=0 model is right at the metal-insulator transition and the
presence of a finite t� increases even further the value of U
necessary to position the system in the insulating phase.30,58

The leading effect of third-neighbor hopping t� is also to
increase an exchange interaction, this time J3, through the
relation

J3 = 4
t4

U3 → J3 = 4
t4

U3 + 4
�t��2

U
. �41�

However, in this case antiferromagnetic �positive� exchange
also contributes, as does the ring exchange term, to a nega-
tive �downward� dispersion along the magnetic zone bound-
ary. Including just t�, one would therefore expect the best-fit
parameters for the data to include a particularly small ratio of
t /U, which is indeed the case. Hence we see that, as far as
this characteristic dispersion is concerned, t� and t� play op-
posing roles. It is therefore clear that one needs to include
both hopping constants to get a good fit to the experimental
data as we have illustrated in Fig. 3 with parameters �Eq.
�37�� similar to those in other cuprates.24,28,42

Given that individually, terms of order t2t�2 /U3 are only
one tenth of the magnitude of terms of order t�2 /U or of the
terms of order t4 /U3, one might expect the good fit reported
in Eq. �38� to be also obtained when taking into account
terms of order �t��2 /U and �t��2 /U only, and ignoring the
host of more complex four-hop terms generated by the fur-
ther neighbor hopping. Not so. If one neglects them and only
considers t� and t� to order 4�t��2 /U and 4�t��2 /U, one ob-
tains the following set of best-fit parameters:

	
t/U = 0.14 �0.03,

t�/t = 0 �0.0,

t�/t = 0 �0.0,

t = 0.303 eV,

U = 2.14 eV.

 �42�

Within numerical error this is the same data set as Coldea et
al. �Eq. �36��, with t� / t= t� / t=0. The rather surprising and
interesting conclusion is therefore that, on their own, the
two-hop further neighbor terms make no net contribution.
Rather, it is the four-hop processes that make the difference.
It seems that their small value is compensated for by their
multiplicity; that is, by the fact that a given site i appears in
a large number of diagrams of order 1 /U3. Hence, their con-
tribution is increased by an order of magnitude and in this
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intermediate coupling regime, the global effect of the near-
neighbor four-hop terms, the majority of which are ring ex-
changes, is as important as that for the two-hop further
neighbor processes. �Note that as t� and t� are both zero in
Eq. �42�, Zc�k� is once again given by Eq. �33� over the
whole zone.� An alternative procedure would be to impose
some partial constraints on the parameters �t , t� , t� ,U�, using
values obtained from, say, band-structure calculations. Re-
sults of such fits are briefly discussed in Appendix E.

Finally, we remark that in our fitting procedure, the sym-
metry is broken between data sets with positive and negative
values for the ratio t� / t�. The best fit occurs for a negative
ratio t� / t� �see Eq. �37��. Recall that a canonical particle-hole
transformation at fixed chemical potential changes the sign
of all hopping integrals and leaves the filling invariant, since
2−n=n when n=1.3,63 An additional change of phase of the
creation-annihilation operators on one of the sublattices by �
restores the sign of nearest-neighbor hopping t, but not that
of t� and t�. This shows that t� / t and t� / t can have arbitrary
sign but that the sign of t� / t� is physically relevant. The
symmetry breaking between positive and negative signs for
t� / t� can only be accessed by including four-hop processes.
As one can see from Appendix A, most of the spin interac-
tion terms are even in powers of t, t�, and t�. However, a
small number of terms have odd powers of t� and t�. These
are the terms that determine the sign of the hopping ratios.
This can be seen in Fig. 5 where we show the �2 parameter
from the fitting algorithm as a function of t� / t and t� / t �the
value of t /U being set to the best-fit value�. If the terms
proportional to t2t�t� /U3 are deleted from Hs

�4� �see Fig. 5�,
the �2 parameter has fourfold symmetry and there are four
points of best fit independently of the sign of t� / t and t� / t.
On the other hand, when these terms are included �see Fig.
5�a��, the symmetry is clearly broken. The minima of �2 that
correspond to a negative ratio of t� / t� �top left and bottom
right corners of Fig. 5�b�� become broader and deeper, while
those for positive ratio are narrower and more shallow. The
fitting procedure hence favors the two points with a negative
sign for the ratio t� / t�. To lift the remaining degeneracy we
have to appeal to band-structure calculations25,26,42 or
ARPES experiments,20–23,41 both of which find t� / t negative,
hence t� / t positive.

B. Magnetization and spin Hamiltonian

Having found a set of parameters �t , t� , t� ,U� that suitably
describes the experimental spin-wave dispersion data, we
now explore how this set and the derivation of the effective
spin Hamiltonian Hs

�4��t , t� , t� ,U� affects the value of the
zero-temperature Néel order parameter.

1. Magnetization operator

In the construction of effective theories all operators, OH,
defined in the original model must be canonically trans-
formed before they can be exploited in a calculation within
the spin-only theory. That is, within the effective theory, OH
becomes Os=eiSOHe−iS and the expectation value in the
ground state is defined by

�O� = H�0�OH�0�H

H�0�0�H
= s�0�Os�0�s

s�0�0�s
. �43�

Here �0�H and �0�s=eiS�0�H are the ground state wave vec-
tors in the original Hubbard �H� and spin-only �S� models.
We have recently shown34 that incorporating this transforma-
tion has important consequences for the ground state magne-
tization as one moves into the intermediate coupling regime.
On application of this procedure on the magnetization opera-
tor we find34 quantum fluctuations arising from the charge
delocalization over closed virtual loops of electronic hops.
These spin-independent fluctuations allow us to reconcile an
apparent paradox concerning the behavior of the ground state
magnetization, as a function of t /U. As discussed above, the

(a)

(b)

FIG. 5. �Color online� Goodness of fit parameter �2 as a func-
tion t� / t and t� / t with the terms with odd powers of t� / t and t� / t �a�
excluded and �b� included.
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leading effect of including processes to order t�t /U�3 is to
introduce effective second- and third-neighbor spin interac-
tions �see Eq. �1��. Within the lowest 1 /S order spin-wave
approximation, the resulting effective ferromagnetic second-
neighbor interaction reduces the transverse quantum spin
fluctuations and stabilizes the Néel order of the spin model.
This would naively seem to imply that the staggered magne-
tization should be an increasing function of t /U as the sys-
tem departs from the Heisenberg limit, t /U→0; a result
which is difficult to justify on physical grounds. Indeed, one
might expect that as t /U is increased, the enhanced electron
mobility would lead to a progressive return to the nonmag-
netic metallic state, with the staggered moment decreasing as
t /U increases, as found in Ref. 60, rather than increasing. In
Ref. 34 we showed that this is indeed the case: the quantum
fluctuations, or “charge fluctuation” channel, arising from
virtual doubly occupied states, counter the effect of generat-
ing a ferromagnetic second-neighbor interaction. Conse-
quently, the ground state magnetization for the Hubbard
model, when calculated using the spin-only description, is
indeed a decreasing function of t /U. The main steps of the
calculation are reviewed below and then extended to include
the hopping parameters t� and t�.

Within the Hubbard Hilbert space, the staggered magne-
tization operator MH

† is defined by

MH
† =

1

N
�

i

Si
ze−iQ·ri, �44�

where

Q = ��,�� and Si
z =

1

2 �
s1,s2

ci,s1

† �s1,s2

z ci,s2
. �45�

The magnetization in the ground state �0�H of the Hubbard
model is defined as

M = H�0�MH
† �0�H. �46�

Working within the effective spin theory, we have to express
all the operators in the spin language. Mathematically this
means that the unitary transformation in Eq. �13� has to be
applied to all operators including MH

† :

Ms
† = eiSMH

† e−iS. �47�

The commutation relations between MH
† and the different

operators in Eq. �13� are64

�T1,MH
† �=̂

1

N
T̃1 =

t

N
�
i,j,�

ni,�̄ci,�
† cj,�hi,�̄�− 1�i�̂�,�

z , �48�

�T−1,MH
† �=̂

1

N
T̃−1 =

t

N
�
i,j,�

hi,�̄ci,�
† cj,�ni,�̄�− 1�i�̂�,�

z , �49�

�T0,MH
† �=̂

1

N
T0 =

t

N
�
i,j,�

�ni,�̄ci,�
† cj,�ni,�̄�− 1�i�̂�,�

z

+ hi,�̄ci,�
† cj,�hi,�̄�− 1�i�̂�,�

z � . �50�

Expressed in terms of these operators, the staggered magne-
tization operator reads34

Ms
† = M +

1

U
�T̃1 − T̃−1� +

1

2U2 �T̃−1T1 − T−1T̃1� . �51�

The symmetry associated with half-filling ensures that con-
tributions to this expression corresponding to odd numbers
of hops, such as the second term in the right-hand side of Eq.
�51�, are zero. Writing the expression in terms of S=1 /2 spin
operators34 we find

Ms
† =

1

N��i

Si
zeiQ·ri −

2t2

U2 �
�i,j�

�Si
z − Sj

z�eiQ·ri� . �52�

In the case of periodic boundaries, or in the thermodynamic
limit where boundaries can be neglected, all sites become
equivalent and the correction to the magnetization operator
becomes a multiplicative factor:34

Ms
† = M̃s

†�1 – 8
t2

U2� , �53�

where M̃s
†= 1

N�iSi
zeiQ·ri is the naive expression for the mag-

netization operator in the spin language.34

2. Role of t� and t�

Inclusion of the higher order hopping constants t� and t�
introduces extra paths for charge delocalization and we
might expect other charge fluctuation terms to appear. The
hopping operators Tm in Eqs. �19�–�21� include t� and t� and
the commutation relations in Eqs. �48�–�50� can be general-
ized:

�Tm,MH
† �=̂

1

N
T̃m, �54�

�Tm� ,MH
† �=̂

1

N
T̃m� , �55�

�Tm� ,MH
† �=̂

1

N
T̃m� , �56�

for hops involving t, t�, and t�, respectively. The staggered
magnetization operator �51� is thus also generalized. Drop-
ping the first-order terms in 1 /U that do not contribute to the
expectation value in a singly occupied state, Ms

† takes the
form

Ms
† = M +

1

2U2 ��T̃−1 + T̃−1� + T̃−1� ��T1 + T1� + T1��

− �T−1 + T−1� + T−1� ��T̃1 + T̃1� + T̃1��� . �57�

However, it turns out that the operators T̃m� and T̃m� defined in

Eqs. �55� and �56� are identically equal to 0̂ �Ref. 65�. From
this result, it follows that the first corrections to Eq. �53� that
depend on t� and t� appear beyond the second order in the
perturbation scheme. Hence we find that to order �t� /U�2,
where t�= t, t�, or t�, the expression for Ms

†�t , t� , t�� is un-
changed and given by Eq. �53�. However, this does not mean
that introducing t� and t� has no effect on the expectation
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value for the staggered magnetization. First, the inclusion of
t� and t� in the magnon dispersion modifies the ensemble of
parameters �t , t� , t� ,U� that best fit the data. Second, the
zero-point fluctuations are controlled by �t /U , t� / t , t� / t�,
through the k dependence of uk, vk, Ak, and Bk in Sec.

III A 1 and this, as we discuss below, directly affects M̃s
†.

The charge renormalization factor has also been calcu-
lated using a Hartree-Fock mean-field method as in Ref. 60,
in which transverse spin fluctuations are neglected �see Ap-
pendix B�. This calculation on a square lattice gives the same
factor, 1–8�t /U�2, independently of t� and t�. Physically this
comes about because, in the spin-density wave ground state
�i.e., Néel order, Q= �� ,���, electron hops between two sites
that belong to the same Néel ordered sublattice are prohib-
ited by the Pauli principle. Hence, same-sublattice hops by t�
and t� do not contribute to charge renormalization to order
�t��2 /U and �t��2 /U.

3. Consequences

An experimental estimate of the zero-temperature sublat-
tice ordered moment in La2CuO4 has been determined from
neutron scattering. Lee et al.45 find

Mexperiment = g�Ms
†��B = 0.55 � 0.05�B, �58�

where g is the Cu2+ Landé g factor. The g factor for Cu2+ in
layered cuprates such as La2CuO4 has apparently not been
determined experimentally.66 However, a typical value for a
distorted octahedral environment is given by Abragam and
Bleaney,67 g�2.2. We use this value to compare theoretical
estimates of the ordered moment with the experimental val-
ue. A spin-wave calculation for the nearest-neighbor Heisen-
berg antiferromagnet gives2,68,69 �Ms

†�nn�0.304, which is in
good agreement with the value obtained from quantum
Monte Carlo. This gives for the moment, Msw=g�Msw

† �nn,
Msw�0.67�B, well in excess of the above 0.55�B value de-
termined experimentally.45 Using the parameter set of Coldea
et al.6 but neglecting charge renormalization leads to an in-
creased expectation value: �Ms

†��0.32, taking the moment
to 0.70�B, hence further from the experimental estimate of
Ref. 45. Including the charge renormalization factor34 �1
−8t2 /U2� of Eq. �53� gives �Ms

†��0.27 and �M†��t�

�0.59�B in better agreement with experiment. Including
both the charge renormalization and the effects of t� and t�
we find

�Ms
†��tt�t�� � 0.235, �59�

from which we obtain

�M†��tt�t�� = g�Ms
†��tt�t�� � 0.52�B, �60�

which is in even better agreement with experiment. Given
the uncertainty in the experimentally measured value in Eq.
�37� and in the theoretical value that should be taken for g, it
is difficult to make in-depth comment on the difference be-
tween �M†��tt�t�� and �M†��t�. However, the results do serve to
illustrate the importance of the charge renormalization at this
level of approximation. Here, it is an essential element in the
quantitative agreement with experiment, and it is only
through the inclusion of spin-independent quantum correc-

tions �e.g., virtual double site occupancy� that quantitative
agreement can be achieved.

IV. DISCUSSION

It is known from ARPES measurements and band-struc-
ture calculations that t� and t� are not negligible compared to
t in a number of copper-oxide materials. We have thus intro-
duced second- and third-neighbor hopping parameters, t� and
t�, into the Hubbard Hamiltonian and included all closed
four-hop virtual electronic pathways into the canonical trans-
formation to derive an effective spin-only Hamiltonian for
the case of a half-filled band. This Hamiltonian contains
many ring exchange terms. These kinds of terms have been
the subject of much discussion lately.34–39 Through this cal-
culation we are able to test the capacity of the one-band
Hubbard model to describe the magnetic properties of the
antiferromagnetic parent high-temperature superconductor
La2CuO4. We find in general good quantitative agreement
between the predictions of the t−t�−t�−U model and experi-
mental measurements of the magnetic properties of the
compound.70

An exact solution of the spin-only Hamiltonian we have
derived is clearly far out of reach. In fact, because of the
frustration and ensuing sign problem introduced by the vari-
ous frustrating bilinear spin-spin couplings and the many
ring exchange terms, even a quantum Monte Carlo attack on
the low-temperature properties of this model seems difficult
to envisage in the near future. However, it has long been
known that a spin-wave analysis up to leading order in a 1 /S
expansion accurately reproduces the zero-temperature stag-
gered moment in the Heisenberg model on a square lattice.2

This is because of the cancellation of the magnon-magnon
interaction terms to second order in 1 /S for this particular
lattice.44 This suggested that a similar spin-wave analysis can
be a good starting point to describe the observed magnetic
excitation spectrum in La2CuO4 and this is indeed what we
have found in this paper.

In our spin-wave calculations we calculated the magneti-
zation to leading order in 1 /S and included the first-order
correction to the classical spin-wave frequencies. The mag-
non energies are thus renormalized by a spin-wave renormal-
ization factor Zc�k�. Since the classical spin-wave frequen-
cies are already of order 1 /U3, we only retained terms of
order t2 /U, �t��2 /U, and �t��2 /U in calculating Zc�k�. Hence,
to this order, it does not depend on the ring exchange terms
which are of order 1 /U3. In the end, Zc�k� raises the energy
scale by about 20% over the whole of the Brillouin zone,
allowing good agreement between experiment and theory
without the introduction of any arbitrary scale factors.

To make contact with experiments on La2CuO4, the spin-
wave calculation was set up starting from the classical anti-
ferromagnetic Néel ground state. Within this framework, the
general effect of the ring exchange is to reduce the transverse
quantum spin fluctuations rather than increase them �see
however, the discussion of charge renormalization in the fol-
lowing paragraph�. With the parameters coming out of the
calculation, we therefore seem far from entering an exotic
quantum phase driven from large quantum spin fluctuations
about the Néel ordered state. Yet, the ring exchanges are
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found to play a very important role. In particular, it seems
that the large numbers of such terms and their large dimen-
sionless prefactors �see Appendix A� outweigh their small
O�1 /U3� amplitude, although a more extensive study is re-
quired here to understand this point in detail. Further, ring
exchange plays a crucial role in determining the relative sign
of the ratios t� / t and t� / t. There is experimental evidence
from ARPES measurements and band-structure calculations
that t� / t is negative while t� / t is positive in a number of
cuprates. In our calculation there are terms of order t2t�t� /U3

that break the t� / t�→−t� / t� symmetry in the effective spin-
only Hamiltonian Hs

�4�, allowing us to deduce the correct sign
for the ratio of t� / t� compared with experiment. In our pro-
cedure, we determined unconstrained values of U , t , t�, and
t� by comparing our magnon dispersion data with that from
experiments on La2CuO4 �Ref. 6�. The best fit is found with
one positive �t� / t� and one negative �t� / t�� ratio, exactly as
in ARPES experiments and band calculations and, for ex-
ample, our best-fit data set is in good agreement with those
from the ARPES experiments on Sr2CuO2Cl2 �compare Eq.
�38� with Eq. �37��.

At the level of approximation at which the canonical
transformation is performed,19,33,34 finite charge mobility
renormalizes the magnetic moment calculated from the spin-
only Hamiltonian by a factor �1–8t2 /U2� �Ref. 34�. We
found that t� and t� do not contribute further to this factor.
This is because direct second- and third-neighbor hops take
electrons from one site to another on the same sublattice,
hence virtual double occupancy is excluded by the Pauli ex-
clusion principle. The expectation value for the zero-
temperature staggered moment coming from the spin-only
Hamiltonian is thus scaled by the same �1–8t2 /U2� factor as
in the case where t�= t�=0 �Ref. 34�. The relevance of this
term can be estimated by comparing theoretical and experi-
mental estimates of the total magnetic moment. Here, we
also find good agreement between the estimates of Lee et al.
in Ref. 45 and our calculated value. The charge renormaliza-
tion is important here, as it scales the magnetization obtained
by considering solely transverse spin fluctuations, by an
amount clearly in excess of the experimental error bars. The
comparison with experiment therefore provides an implicit
illustration of its importance in the real material.

Our results also bear on the question of the appropriate
ratio of the bandwidth �8t to the interaction strength U.
First, note that on purely theoretical grounds, when U is of
the order of the tight-binding bandwidth, one expects the
Hubbard model to undergo an insulator-to-metal transition,
resulting in a breakdown of the perturbation expansion in
t /U.58,71 In our calculations, since the next order terms in the
expansion of t /U are smaller than the leading term, there is
no evidence of such a breakdown. In fact, for the value
t /U�0.126 �or U�8t� that we found, we argue that the
Hubbard model is definitely in the Mott insulator regime, as
is necessary for the expansion to be valid. Indeed, at t�= t�
=0, one can extract from quantum Monte Carlo
calculations57 that the Mott gap should close around t /U
�0.167 �or U�6t�, a value consistent with recent estimates
from quantum cluster calculations.14,15,17 Although the criti-
cal t /U in general depends on t�,58,59 for t�=−0.3t on the
square lattice, the critical t /U is still very close to the value

appropriate for t�=0 �Ref. 72�. One can also check that for
t /U�0.126, the single-particle spectral weight displays
bands associated with antiferromagnetic excitations that dis-
perse with J and are distinct from Hubbard bands further
away from the Fermi energy.73 When the gap is induced
purely by antiferromagnetic fluctuations �Slater mechanism�,
the distinct Hubbard bands are absent.11 In addition, for in-
sulating behavior induced by antiferromagnetic fluctuations,
the potential energy decreases when insulating behavior
occurs.74 This is not obseved for t /U�0.126.75

For t�= t�=0, the best-fit value of t /U�0.14 found by
Coldea et al.6 places La2CuO4 close to the insulator-to-metal
transition discussed above. However, with the inclusion of t�
and t� and of all ring exchange terms to order 1 /U3, we find
a ratio t /U�0.126 which is decreased compared with the
initial fit of Coldea et al., which did not include these further
neighbor hoppings. This places the ratio t /U for La2CuO4
within the Mott insulating phase of the Hubbard model dis-
cussed in the previous paragraph, by contrast with the result
found in Ref. 12. If we had obtained the opposite result,
namely, that the best fit for t /U increases in the presence of
t� and t�, the whole approach would have become extremely
doubtful as a description of La2CuO4. Another approach,
starting for example from the three-band model,71 would
have become necessary. Instead, the result that we find here
for t /U gives a consistent picture where the parameters of
the one-band Hubbard model describe well the physical
properties of an insulator at half-filling discussed here,
namely, the magnetic excitation spectrum and the resulting
parameters extracted independently from photoemission ex-
periments. These parameters are also in agreement with
those describing the doped insulator26 including the sign and
magnitude of the ratio t� / t�. In fact, a nonvanishing t� is
necessary to obtain a consistent picture since, without it, t /U
would increase56 compared with its t�= t�=0 value, as argued
above. This general picture is consistent with previous work
where the one-band model has been extended to U−t−t� but
with t�=0 �Refs. 76 and 77� with the conclusion that the
model only captures the qualitative behavior of the cuprates.
Further comparisons could be made with experiments where
ring exchange terms manifest themselves. These include dif-
fuse scattering above the magnetic transition temperature,48

Raman spectroscopy78 or phonon mediated multimagnon
excitations.79

To close, and reiterate, one of the noteworthy results of
this work is that the presence of the ring exchange terms in
the effective spin-only theory allows us to determine the
relative sign of t� and t�. More generally, the theory pre-
sented herein, restricted to the reduced Hilbert space of spin
degrees of freedom only, gives results for the electronic band
parameters that are compatible with ARPES experiments
and theoretical band calculations for a variety of cuprate ma-
terials. In addition, the value of U�8t that we find is con-
sistent with the origin of the insulating behavior in parent
high-temperature superconductors being mostly due to Mott
physics. As a final word, we propose that our results provide
further evidence that the t−t�−t�−U one-band Hubbard
model in the intermediate coupling regime gives a consistent
unified description of high-temperature cuprate supercon-
ductors and of their parent insulating phases.
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APPENDIX A: SPIN HAMILTONIAN WITH t, t�, AND t�

The purpose of this appendix is to give the spin-spin in-
teraction terms appearing in the spin-only Hamiltonian in-
cluding t� and t� up to order 1 /U3 in the canonical transfor-
mation. The sole effect of introducing t� and t� to order
�t��2 /U and �t��2 /U is to renormalize the coupling constants
already present in the spin Hamiltonian �Eq. �16�� generated
from the t-U Hubbard model, up to order t4 /U3. Including t�
and t� up to order, 1 /U3 generates many more terms that
further renormalize these coupling constants. However, a
number of terms with other “topologies” appear and these
play a key role on the results discussed in this paper. For
reasons of compactness we introduce the following notation:

P4
i,j,k,l = ��Si · S j��Sk · Sl� + �Si · Sl��Sk · S j� − �Si · Sk��S j · Sl�� ,

P2
i,j,k,l = �Si · S j + Si · Sk + Si · Sl + S j · Sk + S j · Sl + Sk · Sl� .

�A1�

Figure 6 illustrates the sites involved in t� and t� hopping
�see also Fig. 1�. The symbol —�— means that the corre-

sponding sites participate in the expression of the coupling
interaction, whereas the symbol —�— means that these sites
are transparent in the electronic process. That is the electron
“hops over” the site in question. As there is at present con-
siderable interest in diluted Mott-Hubbard systems, such as
in the La2CuxZn1−xO4 /La2CuxMg1−xO4,80–83 we keep track,
in the derivation of the spin Hamiltonian, of the occupation
of the sites visited by the electrons, so that 
i=1 if a site i is
occupied by a spin and 
i=0 if the site is not occupied. Here
we only consider the case of 100% Cu2+ site occupation
�x=1�.

4 t�2

U Si · Sk��i�k�

4 t�2

U Si · Sm��i�m�

− 8 t�2t2

U3 ��i� j�k�l�P2
i,j,k,l

4 t�2t2
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FIG. 6. Label of the different sites involved in the many-spin
terms induced by t� and t� to order 1 /U3.
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U3 �i� j�m�kP4

i,j,k,m

4 t2t�t�
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U3 �i� j�l�k��Si · Sk��S j · Sl��

+ 80 t�4

U3 �i� j�l�kP4
i,j,k,l

4 t�2t�2

U3 �i� j�l�k�− 1�P2
i,j,k,l

4 t�2t�2
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APPENDIX B: MEAN-FIELD SOLUTION OF SPIN
HAMILTONIAN WITH t, t�, AND t�

The purpose of this appendix is to determine the sublat-
tice magnetization at zero temperature for the t−t�−t�−U
Hubbard model using the Hartree-Fock �mean-field� method
of Ref. 60. From Eqs. �17� and �18�, the t−t�−t�−U Hubbard
model is

HH = T + T� + T� + V �B1�

=− t �
i,j1;�

ci,�
† cj1,� − t� �

i,j2;�
ci,�

† cj2,�

− t� �
i,j3;�

ci,�
† cj2,� + U�

i

ni,↑ni,↓, �B2�

where j1, j2, and j3 are respectively the first-, second-, and
third-nearest neighbors of i. Fourier transforming this ex-
pression leads to

HH = �
k,�

�
k + 
k� + 
k��ck,�
† ck,�

+
U

2N
�

k,k�,q
�

�,��,	,	�

�,��	,	�ck�,�
† c−k�+q,	�

† c−k+q,	ck,�,

�B3�

where

	
k = − 2t�cos�kx� + cos�ky�� ,


k� = − 2t��cos�kx + ky� + cos�kx − ky�� ,


k� = − 2t��cos�2kx� + cos�2ky�� .

 �B4�

The sublattice magnetization for nesting wave vector Q is
defined by

M = ���SQ
z ��� , �B5�

where we consider the case where the magnetization is po-
larized along the ẑ direction. ��� is the spin-density wave
ground state. The spin-density operator Sq

i for arbitrary q
wave vector is defined by

Sq
i =

1

N
�

k,�,	
ck+q,�

† �̂�,	
i ck,	, �B6�

N being the number of sites.
We define operators �k,�

c and �k,�
v through the Bogoliubov

transformation:

	�k,�
c = ukck,� + vk�

	

�̂�,	
3 ck+Q,	,

�k,�
v = vkck,� − uk�

	

�̂�,	
3 ck+Q,	,
 �B7�

and inject Eq. �B7� into the Hartree-Fock factorization60 of
Hamiltonian �B3� finding
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Ek = 
k� + 
k� � ��2 + 
k
2 , �B8�

where the density wave gap � is given by

� = −
UM

2
. �B9�

The Bogoliubov coefficients for this transformation uk and
vk are

	uk
2 =

1

2
�1 +


k

Ek − 
k� − 
k�
� ,

vk
2 =

1

2
�1 −


k

Ek − 
k� − 
k�
� .
 �B10�

With the valence band filled and the conduction band empty,
since the calculation here is done at zero temperature, it fol-
lows from the above relationships that

M = ���SQ
z ��� =

2

N
�
k

ukvk, �B11�

hence

M = −
4

N
�
k

�

Ek − 
k� − 
k�
. �B12�

Putting Eq. �B9� into Eq. �B12� gives the following self-
consistent equation for the sublattice magnetization:

1

U
=

1

N
�
k

1

�
k
2 + �UM

2
�2

. �B13�

We remark that Eq. �B13� is independent of 
k� or 
k�. Con-
sidering t /U�1, we can expand the square roots of Eq.
�B13� in 
k /U, after which we find

1

N
�
k

1

�
k
2 + �2�1/2 =

1

N
�
k

2

UM
�1 −

2
k
2

U2M2� =
1

U
.

�B14�

Further simplifications lead to

M = 1 −
4

NM2�
k


k
2

U2 . �B15�

To first order in t /U we obtain

M � 1 −
4

N
�
k


k
2

U2 . �B16�

Since 1
N�k


k
2

U2 = 4t2

U2
1
N�k�cos�kx�+cos�ky��2 and

1

N
�

k

�cos�kx� + cos�ky��2 =
1

2
, �B17�

we conclude that

M = 1 – 8
t2

U2 . �B18�

This result is equivalent to that obtained through the unitary
transformation method in Eq. �53� if transverse spin fluctua-
tions are neglected, as they are in the Hartree-Fock approach.
Mathematically, it is the property 
k=−
k+Q that makes
nearest-neighbor hopping different from the other two hops
which both obey, instead, 
k�=
k+Q� , 
k�=
k+Q� . Note that

k , 
k� , 
k� in this appendix are the quasiparticle energies,
which should not be confused with the spin-wave �magnon�
energies in Sec. III A 1.

Physically, since t� and t� are hops within the same sub-
lattice �parallel spins� of the classical Néel antiferromagnetic
solution, in the strong coupling limit the Pauli principle pro-
hibits hopping between these sites. Hence, to leading order,
t� and t� cannot change double occupancy or, in other words,
produce charge fluctuations �or “charge renormalization”�.

APPENDIX C: SPIN-WAVE RESULTS

By introducing the transformations of Eq. �24� in
Hs,quad

�4� �t , t� , t� ,U� �Eq. �23��, transforming to Fourier space,
and collecting all terms, we obtain, after some tedious but
straightforward algebra, the following expressions for the
functions Ak and Bk:

U

�4t2�
Ak = 4J1S + J2S�4 cos�kx�cos�ky� − 4� + J3S�2 cos�2kx� + 2 cos�2ky� − 4� − JcS

3�4 + 4 cos�kx�cos�ky��

+ 40S3� t

U
�2� t�

t
�2

�− 4 + 2 cos�kx + ky� + 2 cos�kx − ky�� + 16S� t

U
�2� t�

t
�2

+ 20S3� t

U
�2� t�

t
�2

�16 − 16 cos�kx�

�cos�ky� + 4 cos�2kx� + 4 cos�2ky�� − S� t

U
�2� t�

t
�2

�8�cos�kx�cos�ky� − 1� + 4�cos�2kx� + cos�2ky��

+ 16 + 8�cos�kx�cos�ky� − 1�� + 12S� t

U
�2� t�

t
�2

+ 20S3� t

U
�2� t�

t
�2

�− 16 + 8 cos�2kx� + 8 cos�2ky�� − S� t

U
�2� t�

t
�2

��32 + 8�cos�2kx� + cos�2ky� − 2�� − 20S3� t

U
�2� t�

t
�� t�

t
��32 − 8�cos�2kx� + cos�kx − ky� + cos�kx + ky�
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+ cos�2ky��� − � t

U
�2� t�

t
�� t�

t
�S�32 + 16�cos�kx�cos�ky�� + 8�cos�2kx� + cos�2ky��� + 20� t

U
�2� t�

t
�� t�

t
�

�S3�16 − �16�cos�kx�cos�ky� − 1�� − 8�cos�2kx� + cos�2ky� − 2� + 4�4 cos�kx�cos�ky� − 4�� − 2� t

U
�2� t�

t
�� t�

t
�

�S�8 cos�kx�cos�ky� + 4 cos�2kx� + 4 cos�2ky�� + 20S3� t

U
�2� t�

t
�2� t�

t
�2

�− 32 + 16�cos�2kx� + cos�2ky��

+ 16 cos�kx�cos�ky� − 8 cos�2kx + 2ky� − 8 cos�2kx − 2ky�� + 2S� t

U
�2� t�

t
�2� t�

t
�2

�− 48 + 8�cos�2kx� + cos�2ky��

+ 24�cos�kx�cos�ky�� + 4�cos�2kx + 2ky� + cos�2kx − 2ky��� + S� t

U
�2� t�

t
�2� t�

t
�2

�32 cos�kx�cos�ky� − 32�

+ S� t

U
�2� t�

t
�2� t�

t
�2

�− 16 + 4�cos�3kx + ky� + cos�3kx − ky� + cos�kx + 3ky� + cos�kx − 3ky��� + 20S3� t

U
�2� t�

t
�4

��− 4 + 4�cos�2kx� + cos�2ky�� − 2 cos�2kx + 2ky� − 2 cos�2kx + 2ky�� + S� t

U
�2� t�

t
�4

��4 cos�2kx� + 4 cos�2ky��

− 12 + 2 cos��2kx + 2ky� + cos�2kx + 2ky��� + 40S3� t�

t
�2� t

U
�2

�16�cos�kx�cos�ky� − 1��

+ 2S� t�

t
�2� t

U
�2

�16 + 16 cos�kx�cos�ky�� , �C1�

U

�4t2�
Bk = 2J1S�cos�kx� + cos�ky�� − 4JcS

3�cos�kx� + cos�ky�� + S� t

U
�2� t�

t
�2

4�cos�2kx + ky� + cos�2ky + kx�

+ cos�2kx − ky� + cos�2ky − kx�� + 80S3� t

U
�2� t�

t
�2

�cos�kx� + cos�ky�� − S� t

U
�2� t�

t
�2

�4�cos�kx� + cos�ky��

+ 4�cos�kx� + cos�ky�� + 4�cos�kx� + cos�ky��� + S� t

U
�2� t�

t
�2

�2�cos�3kx� + cos�3ky�� + 2 cos�2kx + ky�

+ 2 cos�2kx − ky� + 2 cos�kx + 2ky� + 2 cos�kx − 2ky�� + 20S3� t

U
�2� t�

t
�2

�− 8�cos�kx� + cos�ky�� + 4�cos�2kx + ky�

+ cos�2kx − ky� + cos�kx + 2ky� + cos�kx − 2ky��� − S� t

U
�2� t�

t
�2

�8�cos�kx� + cos�ky�� + 4�cos�2kx + ky�

+ cos�2kx − ky� + cos�kx + 2ky� + cos�kx − 2ky��� − 20S3� t

U
�2� t�

t
�� t�

t
��4�2 cos�kx� + 2 cos�ky��

− 4�cos�2kx + ky� + cos�2kx − ky� + cos�2ky + kx� + cos�2ky − kx��� − S� t

U
�2� t�

t
�� t�

t
��24�cos�kx� + cos�ky��

+ 4�cos�2kx + ky� + cos�2kx − ky� + cos�2ky + kx� + cos�2ky − kx��� + 20S3� t

U
�2� t�

t
�� t�

t
��8�cos�kx� + cos�ky��

+ 8�cos�kx� + cos�ky�� − 4�cos�2kx + ky� + cos�2kx − ky� + cos�kx + 2ky� + cos�kx − 2ky��� − 2S� t

U
�2� t�

t
�� t�

t
�

��4 cos�kx� + 4 cos�ky� + 2�cos�2kx + ky� + cos�2kx − ky� + cos�kx − 2ky� + cos�kx + 2ky��� + 40S3� t

U
�2� t�

t
�2

��− 8�cos�kx� + cos�ky�� + �2 cos�2kx − ky� + 2 cos�2kx + ky� + 2 cos�kx + 2ky� + 2 cos�kx − 2ky��

��+ 4�cos�kx� + cos�ky���� + 2S� t

U
�2� t�

t
�2

�12�cos�kx� + cos�ky��

+ �2 cos�2kx − ky� + 2 cos�2kx + ky� + 2 cos�kx + 2ky� + 2 cos�kx − 2ky��� . �C2�
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APPENDIX D: SPIN-WAVE RENORMALIZATION FACTOR Zc

We consider the terms in the transformed spin-only Hamiltonian of order 1 /S2 as a perturbation to the lowest order
spin-wave Hamiltonian. Within this framework the perturbation gives quartic terms in boson creation and annihilation opera-
tors, for which we have to diagonalize the set of 2�2 matrices of elements �0��kH4�k�

†�0�, where ��k ,�k��� ��k ,	k�.
We first review the situation when t� and t� are set equal to zero:

	H2�t� = SJ1�t��
�i,j�

�ai
†ai + bj

†bj� + 2�aibj + ai
†bj

†� ,

H4�t� = −
J1�t�

2 �
�i,j�

�ai
†aiaibj + aibj

†bjbj + ai
†ai

†aibj
† + ai

†bj
†bj

†bj� + 2ai
†aibj

†bj .
 �D1�

Here, we work to leading order in t /U, for which J1�t�=4t2 /U. Note that, within this appendix, we use a compact notation:
Hs,quad

�4� →H2 and Hs,quart
�4� →H4. It turns out that the 2�2 perturbation matrix is proportional to the identity matrix. We find


k =
1

2N
J1�t��− 2�uk

2 + vk
2��

k�

�uk�vk��2 cos�kx�� + 2 cos�ky���� − �ukvk�2 cos�kx� + 2 cos�ky����
k�

2vk�
2

+ 4�uk
2 + vk

2��
k�

2vk�
2 + 4ukvk�

k�

uk�vk��2 cos�kx − kx�� + 2 cos�kyky���� �D2�

from which the magnon energy correction �k�
k /
k can be computed. �k converges numerically to give

�k � 0.1579 �D3�

uniformly over the Brillouin zone, as found previously in Ref. 44.
When t� or t� are brought into the picture the leading effects are to create second- and third-nearest-neighbor interactions

J2�t��=4�t��2 /U and J3�t��=4�t��2 /U producing contributions to the quartic Hamiltonian:

	H4�t�� = J2�t�� �
��i,j��

ai
†aiaj

†aj −
1

4
�ai

†aiaiaj
† + ai

†aj
†aj

†aj + ai
†ai

†aiaj + ai
†aj

†ajaj� ,

H4�t�� = J3�t�� �
���i,j���

ai
†aiaj

†aj −
1

4
�ai

†aiaiaj
† + ai

†aj
†aj

†aj + ai
†ai

†aiaj + ai
†aj

†ajaj� .
 �D4�

The contribution coming from t� reads


k� =
1

2N
J2�t���2�uk

2 + vk
2��

k�

4vk�
2 + �uk

2 + vk
2��

k�

2�uk�
2 + vk�

2 ��2 cos��kx + ky� − �kx� + ky��� + 2 cos��kx − ky� − �kx� − ky����

+ �uk
2 + vk

2��
k�

�uk�
2 + vk�

2 �2�cos�kx� + ky�� + cos�kx� − ky��� + 2�cos�kx + ky� + cos�kx − ky���
k�

�uk�
2 + vk�

2 �2vk�
2 � , �D5�

while that from t� reads


k� =
1

2N
J3�t���2�uk

2 + vk
2��

k�

4vk�
2 + �uk

2 + vk
2��

k�

2�uk�
2 + vk�

2 ��2 cos�2kx − 2kx�� + 2 cos�2ky − 2ky���

+ �uk
2 + vk

2��
k�

�uk�
2 + vk�

2 �2�cos�2kx�� + cos�2ky��� + 2�cos�2kx� + cos�2ky���
k�

�uk�
2 + vk�

2 �2vk�
2 � . �D6�
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We now find that the total contribution of the terms coming
from t, t�, and t� is no longer independent of wave vector, but
the twofold degeneracy for each k remains. The evolution of
�k over the Brillouin zone is shown in Fig. 4 for the param-
eter set �38�.

Dividing the contributions to Zc�k� into three parts com-
ing from t, t�, and t� and denoting an average over the Bril-
louin zone by � · �k we find

	��k� = 0.187,

��k�� = 0.019,

��k�� = 0.013,

 �D7�

using the parameter set �38�. Note that here �k� and �k� do not
factorize analytically in Eq. �D5� or Eq. �D6�, rather, for each
wave vector, we calculate �k��
k� /
k� and similarly for �k�.
Note also that as t� and t� become nonzero, even the first
term evolves. This is because 
k is itself a function of t� and
t� and so it changes as these parameters are switched on.

As discussed in Sec. III A 4, incorporating the k depen-
dence of Zc�k� makes the fitting procedure somewhat com-
putationally cumbersome and slow from a CPU speed point
of view. There are two reasons for this. First, it is due to the
need to constantly redo the “internal” sum over k� in Eqs.
�D2�, �D5�, and �D6� whenever the t, t�, t�, and U parameters
are readjusted. Second, to compound this problem the CPU
time is further increased by noting that the sums over k� in
Eqs. �D2�, �D5�, and �D6� converge somewhat slowly with
system size. This is illustrated in Fig. 7, for a magnetic Bril-
louin zone of linear dimension L, for the parameter set �38�
�here the lattice parameter is taken to be unity�.

Replotting the data in Fig. 8, we show that ��k� scales
with system size as

��k�k�L� =
�

L
+ ��k�k��� , �D8�

where � is a constant, from which we find

��k�k��� � 0.219. �D9�

The width of the standard deviation of ��k� over the Bril-
louin zone, ����k��, scales in a similar way and we eventu-
ally find

���k�
��k�k

��� � 0.33 � 10−3. �D10�

Finite-size effects lead to negligible corrections compared to
the least-squares fitting procedure, for L�100. A magnetic
Brillouin zone of this size was used to make the fits de-
scribed in the main text.

APPENDIX E: PARTIALLY CONSTRAINED
SPIN-WAVE FITS

For a number of compounds, such as Sr2CuO2Cl2,
Bi2Sr2CaCu2O8+ �BSCCO, Bi-2212�, and YBa2Cu3O6+

�YBCO�, values of t��−0.3 eV, t��0.2 eV, and U
�10 eV are commonly used.23 However, these values are
not truly universal among the cuprates. For example, in Ref.
26, local density approximation �LDA� calculations do pre-
dict variations from one compound to the other. In particular,
for La2CuO4, t� / t=−0.17 is obtained and is the value used in
ARPES data analysis.22

A recent ARPES experiment by Yoshida et al.20 on doped
La2−xSrxCuO4 finds that t� varies slightly between composi-
tions. For x=0.03, they obtain t� / t�−0.2 and t� / t��0.5. To
the best of our knowledge, there exist no ARPES measure-
ments on undoped La2CuO4, but one may extrapolate to
t� / t=−0.21 for this composition. In this context, we have
performed a constrained fit to the spin-wave dispersion data
of Ref. 6, imposing t� / t=−0.2, t� / t�=0.5 and t=0.25 eV and
only allowing U to vary. We were unable to find a reasonable
value of U with such constraints. Indeed, we found U
�1.6 eV with a poor quality of fit.

We then allowed both t and U to vary. The motivation
being that the effective ratios t� / t=−0.2 and t� / t�=0.5 could
be well determined by ARPES, while the value of t deter-
mined from the electronic bandwidth could be strongly
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FIG. 7. �Color online� Evolution of ��k�k as a function of the
number of points in the Brillouin zone.
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FIG. 8. �Color online� Evolution of L� ��k�k as a function of
the number of points in the Brillouin zone.
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renormalized. The best fit then obtained was t=0.3430 eV
and U=2.55 eV, hence U / t=7.42. Compared to the fit with
free t, t�, t�, and U values, the overall �2, with

�2 = �
n

�En
experimental − En

fit�2/�experimental uncertainty�n,

�E1�

where Ei is nth magnon energy data point, is increased by
roughly 25% for the fit with t� / t and t� / t� constrained com-
pared with the fit with the values in Eq. �38�.

This value of t�0.34 eV agrees roughly with that found
by Coldea et al.,6 and the value U�2.55 is in between that
of Ref. 6 and the one found in this work and reported in Eq.
�38�. In other words, for the constrained values of t� and t�
used in such a fit, the values are sufficiently “small” that the
results for t�= t�=0 of Ref. 6 are more or less recovered. In
other words, the ratio t /U is a crucial parameter in the fit.
Working with a fit with t� / t and t� / t fully constrained leads
to a �reduced� ratio t /U compared to the unconstrained fit of

Eq. �38�. Yet, this reduced U=2.55 eV also gives a reduced
t=0.34 eV, with the result that while the unconstrained fit
has t /U=0.126, the constrained fit has t /U=0.34 /2.55
=0.133 and Coldea et al. finds t /U=0.135. Given that t� / t�
is essentially the same in the constrained and unconstrained
fits, one can think of the constrained fit as an intermediate
value as one increases t� and t� at constant t� / t�. Indeed, we
find the following progression of values, moving from the
Coldea et al. results to the constrained fit results and finally
to the unconstrained fit results: U=2.3, 2.55, and 3.34 eV, t
=0.3, 0.34, and 0.42 eV, and t /U=0.135, 0.133, and 0.126.
This progression of parameters appears monotonous. Given
that we expect t� and t� to frustrate Néel ordering, we also
expect the metal-insulator transition also to appear for
smaller values of t /U with increasing t� and t�. Our results
are reassuring in this respect because we find the fitted t /U
value getting progressively small as t� and t� are turned on,
consistent with the system remaining in the insulating Néel
ordered state.
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